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A thin-film approximation is used to study the effects of surface tension on a thin
liquid layer lining the interior of a cylindrical tube, where the tube has radius a and a
centreline with weak, uniform curvature 6 /a. Centreline curvature induces a pressure
gradient in the fluid layer, analogous to that due to a weak gravitational field, that
drives fluid from the inner to the outer wall of the tube, i.e. away from the centre of
centreline curvature. The resulting draining flow is computed numerically under the
assumption of axial uniformity, and the large-time asymptotic draining regimes and
flow structures are identified. In the absence of destabilizing intermolecular interac-
tions, the inner wall remains wet, covered with a vanishingly thin fluid layer, while a
near-equilibrium lobe forms on the outer wall. The stability of this quasi-static lobe
to axial variations is then investigated by using numerical and perturbation methods
to solve the linearized Young—Laplace equation, prescribing zero contact angle at the
lobe’s free boundary. Conditions on &, the fluid volume &’V and the tube length
aL are identified separating axially uniform lobes (which are stable for low V' /(dL)
or small L), wavy lobes (some with a solitary structure) and localized fluid droplets
(which exist for sufficiently large V' /0 and L). Hysteresis is demonstrated between
multiple equilibria, the topology of which can change dramatically as parameters are
varied. The application of these results to lung airways is discussed.

1. Introduction

The airways of the lung constitute a network of bifurcating, flexible tubes that are
lined on their interior with a thin, surfactant-covered liquid layer. The distribution
of this fluid lining, particularly in the smaller airways, is strongly influenced by
surface tension. Since a sufficiently long, cylindrical, air-liquid interface is unstable to
axial, surface-tension-driven perturbations (Plateau 1873; Rayleigh 1879), an initially
uniform liquid lining on the interior of a straight cylindrical tube may form either
axisymmetric wetting collars around the wall or, if there is a sufficient volume of
fluid available, a liquid bridge across the tube (Goren 1962; Everett & Haynes
1972; Hammond 1983; Gauglitz & Radke 1988; Johnson et al. 1991; Newhouse
& Pozrikidis 1992). Gas exchange is impaired if an airway is occluded by such an
instability, making ‘airway closure’ of major importance in respiratory mechanics (e.g.
Macklem, Proctor & Hogg 1970; Kamm & Schroter 1989; Grotberg 1994). These
capillary instabilities are also of importance in two-phase porous-media flows, such
as those associated with oil recovery (e.g. Olbricht 1996).

Each lung airway is relatively short, and forms part of a bifurcation at each of
its ends, so that over substantial portions of its length the curvature of the airway
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FIGURE 1. A thin film lines the interior of a curved tube. A denotes the centre of centreline
curvature; I [O] denotes that half of the interior wall closer to [further from] A4, i.e. the inner [outer]
wall of the bend in the tube.

wall is non-uniform. The thin liquid lining of an airway is therefore subject to
surface-tension-generated pressure gradients associated, in particular, with gradients
in wall curvature. It is important to understand the consequent draining flows and the
stability of the resulting fluid distribution, since this will have important implications
for the overall distribution of the airway liquid lining, for its capacity to protect the
airway epithelium and for the dynamics of surfactant transport in airways. Similar
draining flows can arise in porous-media applications, in small-scale manufacturing
equipment and are of potential interest in the microgravity environment.

These considerations motivate a simple model problem in which a uniform tube
with cylindrical cross-section and a weakly curved centreline is lined on its interior
with a thin layer of Newtonian fluid. (The results carry over directly to the thin
exterior lining of a curved cylinder, although this application is not pursued here.)
The total wall curvature is greater on the outer wall of the tube than on the inner wall
(where ‘outer’ denotes the interior wall further from the centre of centreline curvature,
labelled O in figure 1). An initially uniform liquid lining, such as that deposited behind
the nose of a semi-infinite bubble moving slowly down a liquid-filled tube, is unstable
because the larger curvature at the outer wall generates a lower pressure in the fluid
relative to that on the inner wall; the pressure gradient will drive fluid from the
inner to the outer wall. In the thin-film, weak-curvature limit, this pressure gradient
turns out to be equivalent to that due to a weak gravitational field acting on the thin
lining of a straight tube with its axis horizontal, a configuraton examined recently
by Reisfeld & Bankoff (1992). The dynamics of the resulting draining flow can
be modelled using lubrication theory, by incorporating the leading-order effects of
centreline curvature in an evolution equation for the film thickness.

Computations presented below of this axially uniform, azimuthal draining flow
reveal that it has a large-time asymptotic structure that is typical of draining problems
in which ‘dimples’ are created at deformable interfaces, such as during the buoyancy-
driven motion of a nearly spherical bubble through a fluid interface (Jones & Wilson
1978), the draining of a squeeze film between a cell membrane and a rigid or stress-
free surface (Wu & Weinbaum 1982), the formation of axisymmetric wetting collars
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in thin films lining straight cylindrical tubes (Hammond 1983) and the draining of
a fluid droplet under gravity on a vertical wall (Tuck & Schwartz 1991). There is
a flux of fluid, that diminishes with time, from an emptying lobe on the inner wall,
in which the film thickness falls rapidly, into a relatively large, near-equilibrium lobe
on the outer wall. These two regions are connected by a short transition region in
which the film is locally extremely thin. The increased resistance to flow in this thin
region allows draining to persist indefinitely, in the absence of intermolecular forces.
These forces would either cause the film to rupture at its thinnest point (if they
were destabilizing) or ultimately halt the drainage (if they were stabilizing); these
possibilities were considered by Reisfeld & Bankoff (1992), but such effects are not
explicitly included in the present model. It is shown instead that for a liquid lining
that wets the tube wall, there are generally two distinct draining regimes at large
times: a transient phase in which the flux is O(t=/%) at time t; and a later phase in
which the flux is O(t=/?), the inner-wall lobe drains unsteadily and a capillary wave
train with a complex asymptotic structure forms upstream of the thinnest part of the
film. The main purpose of this calculation is to show that at very large times the
solution is well approximated by the quasi-static outer-wall lobe alone (i.e. by the
‘outer’ solution in the language of matched asymptotic expansions); at its boundary
(the transition region), the lobe has zero contact angle at an effective contact line;
the drained region on the inner wall can be treated as effectively dry.

The stability of this equilibrium lobe to axial variations is then considered. A
uniform lobe, which resembiles a static rivulet (see, for example, Davis 1980; Langbein
1990), is shown to be linearly unstable to long-wavelength axial perturbations if the
effective contact lines lie in the inner half of the tube; the lobe is linearly stable if it
is confined entirely to the outer wall. The boundary of neutral stability is presented
in terms of the fluid volume a’V (where a is the tube radius), the tube length (or
solution period) aL and the centreline curvature ¢ /a. This reveals the stabilizing effect
of centreline curvature: whereas for a straight tube the axially uniform equilibrium
state is unstable for all V' provided L is sufficiently large (i.e. for L > 2x), for a curved
tube there is a critical value of V' /6 below which axial uniformity is guaranteed for
all L.

Liquid-lining flows are driven by competing viscous and capillary forces such that
the system moves dissipatively down gradients of free energy, i.e. gradients of effective
surface area (Everett & Haynes 1972). By identifying all energy extrema (i.e. all
possible equilibria), the bifurcation structure of the static solutions can be used to
infer their local stability (Michael 1981; Ungar & Brown 1982), yielding a picture of
the overall dynamics of the system. Thus to take the study of lobe stability further,
we investigate all possible equilibrium solutions of the Young—Laplace equation (here
in its linearized, thin-film formulation it is a forced Helmholtz equation) using L
and V' /o as independent bifurcation parameters. This is a nonlinear, free boundary
problem because the location of the contact lines (at which there is zero contact
angle) must be determined as part of the solution. Similar calculations of capillary
equilibria with free contact lines have been performed by Higgins & Brown (1984),
Saez & Carbonell (1987), Langbein (1990) and others. A weakly nonlinear analysis
shows that an axially uniform lobe bifurcates either supercritically or subcritically to
a branch of wavy lobes, depending on the tube length. Solution branches are then
extended numerically to finite amplitudes. It is shown how there can be hysteresis
in the transition between axially uniform and wavy solutions. Further, in long tubes
the wavy solutions can assume a solitary asymptotic structure, whereby a fluid blob
is connected to a thin axially uniform strip of fluid. For V' /é greater than a critical
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value, the thin strips vanish and the blobs become isolated, forming localized droplets
on the outer wall of the tube; these droplets are analogues of the localized stable
wetting collars that exist in straight tubes.

The model is outlined and axially uniform equilibrium states are discussed in §2.
The axially uniform draining flow is computed in §3. The stability problem is treated
analytically in §4 and numerically in §5. Some implications of the results are discussed
in §6.

2. The model

We derive here the leading-order evolution equation for a thin, non-volatile, isother-
mal film, of viscosity u, uniform surface tension ¢ and average depth ea (where
0 < e < 1), lining the interior of a tube of uniform radius a. The tube has centreline
curvature ox(s)/a where 0 < 6 < 1 and «(s) is a non-dimensional O(1) function of
as, the arclength along the tube centreline. The tube centreline lies in a plane. The
tube core contains a fluid (such as air) of viscosity yu; provided ye < 1 (Hammond
1983), the core fluid responds passively to any motion of the liquid lining, playing no
role in the thin-film dynamics.

2.1. Capillary statics

For the curved interface of a thin film, the leading-order normal-stress condition
reduces to a relation between fluid pressure and interfacial curvature. To compute
this curvature, we introduce a curvilinear coordinate system, with non-dimensional
independent variables (r, ¢,s) (figure 1) with 0 <r < 1,0 < ¢ < 27, —00 < 5 < 0,
for which any small distance may be represented by

dx:a(f» dr +ré do+[1 +5K(s)rsin¢]§ds). (2.1)

The unit normal to an interface r = R(¢, s) is then

. Ry~ Ry, Ry : R\’
= _ g g =1 2 o
n N{r 0] Av}, N —{-( ) + 7

where 4 = 14+Jx(s)R sin ¢, and subscripts s and ¢ denote derivatives, so the interfacial
curvature (scaled on a) is given by

aVen= (1 + M) N_L [ANRﬂ 1 <NRS> R
¢ s

—-1/2
, (2.2)

A4 R R4 R A4\ 4

This reduces to the expression given by Hammond (1983), for example, if 6 = 0.
Setting R = 1 — eh(¢, s), representing the interface of a film of thickness eah, and
taking terms up to leading order in € and 0, the pressure in the fluid layer (o/a)p is
given in non-dimensional terms by p = —aV - n, i.e.

p=—[1+0dksing+e(h+ hyy+ hy)] (2.4)

with error 0(82, de,€?), assuming that the pressure is zero in the core of the tube.
This approximation is reliable provided €/J is neither too large nor too small, in
which case higher-order effects of fluid thickness or curvature should be considered.
The terms in (2.4) can be interpreted as follows: the —1 represents the dominant
contribution to the subatmospheric fluid pressure coming from the almost uniform
azimuthal curvature of the tube wall; the term of O(d) shows that the pressure is
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slightly lower (higher) on the outer (inner) wall of the tube, i.e. on O (I) in figure
1, because of centreline curvature; if the film thickens locally, its azimuthal radius
of curvature falls and the pressure becomes more negative, an effect represented by
the term eh, which is potentially destabilizing; interfacial curvature in the axial and
azimuthal directions (represented by hg, + hy) is stabilizing, however.

The effects of centreline curvature therefore appear as a body force, driving a flow
from the inner to the outer wall (or, equivalently, from the outer to the inner wall if
the fluid lines the exterior of the tube). There is a useful, mathematically analogous
problem to consider at this stage. Suppose a straight, uniform cylindrical tube lies with
its axis horizontal, lined on its interior with a thin layer of fluid that wets the wall; in
the core of the tube is a gas of negligible density. Taking an azimuthal coordinate ¢,
with ¢ = —%n pointing upwards and ¢ = %n downwards in the direction of gravity
g, the condition for hydrostatic equilibrium in the thin fluid layer of density p can
be written to O(e?) as p = constant where p is given by (2.4) with éx replaced by a
Bond number B = pa’g/c. Thus provided B and e are of comparable magnitude,
weak centreline curvature behaves just like a weak gravitational field, acting from the
inner (upper) to the outer (lower) wall. Our results will therefore complement those
of Reisfeld & Bankoff (1992), who examined gravity-driven flow of a thin film lining
the exterior of a horizontal cylinder over a range of Bond numbers.

2.2. Evolution equations

Equation (2.4) can now be incorporated into the evolution equation for a thin fluid
layer; for brevity we dispense with a formal derivation of the lubrication-theory
approximation. (We shall obtain a particular limit of the evolution equation, recently
derived by Roy, Roberts & Simpson (1996), for a thin film on a surface of arbitrary
curvature.) The pressure in the fluid layer is uniform across the film at leading order.
Inertia and gravity are neglected. The free surface of the fluid layer is taken to be
free of tangential stress. The film is locally planar, so that the flow rate and mass
conservation law for the fluid film are in non-dimensional terms (to leading order
in €)

h[-l-Vs'lI =0, q = _%h3vspa (25)

where h now depends also on time ¢, which has been scaled on ua/ae’. The operator
V, represents the gradient along the surface of the curved tube, i.e. (from 2.1)

a0 5 0
Vo= ¢% 1 + 0x(s)sin¢g ds’
The volume flux ¢ arises from flows driven by axial and azimuthal curvature (with
velocities of dimensional magnitude O(e*c/u)) and from flows induced by centreline
curvature (of comparable magnitude O(de’a/p)).

The pressure gradient in (2.5) can be approximated to leading order using (2.4) and
(2.6),

(2.6)

Vp=—0V(ksing) — eV(h+V'h), V= q3aa¢ + S% (2.7)

so that (2.5) yields the leading-order evolution equation
hy+ 16V - [ sin ¢)] + Le¥ - [W(h + ﬁ)} —0. (2.8)

Setting 6 = 0 and neglecting any azimuthal dependence, we recover the evolution
equation of Hammond (1983), Schwartz, Princen & Kiss (1986) and Yiantsios &
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Higgins (1989)
het e [1 (h+ hy),] =0, (29)

which describes both the formation of thin, axisymmetric, wetting collars in straight
tubes and the Rayleigh-Taylor instability of a thin fluid layer. The limit 6 — 0 in
(2.8) is singular, however, since even extremely weak centreline curvature breaks the
symmetry of the problem and over sufficiently long times the solution structure is
profoundly altered from the straight-tube case.

The presence of the sin ¢ term in (2.8) is sufficient to drive an azimuthal draining
flow, and if x varies with s then an axial draining flow is also likely. The latter
possibility was investigated by Schwartz & Weidner (1995) (see also Roy et al. 1996),
who considered the evolution of a thin film on a solid surface with a single, non-
uniform radius of curvature. However, henceforth we set k = 1. In this case (2.8)
is consistent with the evolution equation derived by Reisfeld & Bankoff (1992) for
gravity-driven thin-film flow on a horizontal cylinder.

2.3. Equilibrium solutions with zero contact angle

In the thin-film limit there is no equilibrium h-distribution satisfying (2.8) in a
uniformly curved tube for which the tube wall is everywhere wet. Reisfeld &
Bankoff (1992) showed that steady, axially uniform solutions exist in the presence of
stabilizing intermolecular forces or suitable thermocapillary effects, but neither effect
is considered explicitly here. Instead we assume that the fluid wets the wall, i.e. that
the fluid has zero contact angle at any static contact lines; numerical solutions of
(2.8) in §3 below show that this is a natural and consistent boundary condition for
solutions of this evolution equation. Then, if the tube is allowed to become dry
over some portion of its wall, a variety of steady solutions of (2.8) can be found,
particularly if we allow for axial variation. Assuming that 6 and e are both small,
we seek (in §§4 and 5 below) constant-pressure solutions of (2.4) with wavelength
L, applying zero contact angle at a static contact line ¢ = o(s). Rescaling, setting
K =—(1+p)/o, H=(e/d)h, (2.4) with k = 1 becomes an inhomogeneous Helmholtz
equation,

sing + H + Hyy + Hy; = K, as) < ¢ < im, —L<s<1iL, (2.10)

and solutions are sought subject to suitable no-flux and symmetry boundary condi-
tions

H(¢,—iL) =0, H(¢,3L) =0, Hy(3m,s) = 0. (2.11)
The zero-contact-angle condition is
H =0, Hy —oH, =0 on ¢ = as). (2.12)
The fluid volume in one wavelength is represented by a parameter ¥~, where
EV=1/H dA:z/L/st/n/quﬁH(gb,s), (2.13)
o m s T J-Lp2 a(s)

where S is the area of the wall per unit wavelength wetted by the fluid and ¢’V the
corresponding dimensional fluid volume. Integrating (2.10) over one wavelength and
applying the divergence theorem, the pressure can be related to the fluid volume by

KS =n7 + / sin ¢ dA, (2.14)
S
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L) L2
K = ;n/V—i—/ cos o(s) ds / (3m —als)) ds. (2.15)
L2 —L)2

Solutions of (2.10)—(2.15) are in general parameterized by L and 7¥~; the unknowns
are the film distribution H, the contact line location o(s) and the pressure variable K.
These static solutions are all energy extrema; classical energetic arguments presented
in Appendix A show that as t — oo, solutions of (2.8) evolve to a state of minimum
energy, i.e. to one of the static solutions that exist for given L and 7.

so that

2.4. Axially uniform lobes
The axially uniform equilibrium solution of (2.10)—(2.15) is

Ho(¢) = Ko — L(An — ) cos ¢ + Ay sin ¢ (2.16)

for o < ¢ < Im, where

1 1 1 o 3T — %
Aol(og) = —3 {1 + (ETC —dp) tan Oﬂo} R Ko(og) = 5 (sm oo + s % > . (2.17)

Solutions for four values of oy are shown in figure 2(a). Assuming that a fluid layer
of initially uniform thickness (h = 1, i.e. H = ¢/4, for which ¥~ = 2Le/d) readjusts to
form such a lobe (as demonstrated in §3 below), the volume of a uniform fluid lobe
in a length L of tube is given by ¥~ = 2LV,(«), where (using 2.14)

% [(%TC — OC())K()(OC()) — COS OC()] 5 (218)

1 n/2
Vo) =+ [ Hod =

so that the location of the contact line is defined by Vy(og) = €/5. The function

Vo(ao) is monotonically decreasing as ¢ increases from —%n to %n (see figure 2b),
so that for initially thicker (thinner) fluid layers or more weakly (strongly) curved

tubes the contact line moves to the inner (outer) bend of the tube. For oy — %n,

Vo ~ (%n — a9)°/(45m), an approximation that works well for oy > 0. The pressure
variable K, is non-monotonic as o, increases (figure 2¢), having a minimum value of
1

ZTE.

In the singular limit 6 — O the scalings used in (2.10) are inappropriate. Instead,
letting k = —(1 + p)/e, the axially uniform solution h = ho(¢), k = ko, for which
the contact-line conditions are hy = hpy = 0 on ¢ = —%n, ishg=1+sin¢, kg = 1,

1

representing a cylindrical interface pinned to the line ¢ = —3m.

3. Drainage in a curved tube

Suppose a semi-infinite bubble is blown slowly with steady speed U down a fluid-
filled, weakly curved tube. At leading-order in capillary number (i.e. Ca = uU/o < 1),
the bubble nose forms a hemispherical cap that meets the tube wall with zero contact
angle (Bretherton 1961). Because this interface meets the wall only along a circular
effective contact line, the interface is unaffected (at this order) by the weak longitudinal
curvature of the tube. A short transition region of length O(Ca'/?) around the contact
line, where the film has minimum thickness O(Ca*?), connects the ‘capillary-statics’
region around the bubble nose to a thin-film region upstream. Because the transition
region is short, the dominant pressure gradient is an axial one associated with the
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FIGURE 2. Equilibrium lobes: (a) equilibrium solutions for contact lines located at op = —1.5, —1,

—0.5 and 0, for which J/e = 0.0483, 0.699, 2.938 and 13.44 respectively; (b) the relation between o
and J/e€; (c) the pressure variable Ky(op).

curvature of the film in the axial direction; again, the effects of centreline curvature
are not felt at leading order, so the fluid layer is azimuthally uniform to a good
approximation. However, once the bubble has passed a given location, the effects
of centreline curvature begin to be felt there, and the fluid layer slowly readjusts by
draining from the inner to the outer wall of the tube. The key features of this draining
flow are investigated below, under the assumption of axial uniformity. Solutions are
presented for a surfactant-free (i.e. stress-free) air-liquid interface. Similar results
should arise if a non-diffusing, insoluble surfactant is introduced at the free surface;
since the draining flow is slow at large times, the surfactant distribution is likely to
adjust relatively rapidly in response to the flow, assuming a quasi-steady, non-uniform
distribution which effectively immobilizes the interface, reducing the fluid flux by up
to a factor of four and increasing draining times accordingly. This possibility is not
explored further here, however.

3.1. Numerical solution

The axially uniform, unsteady draining of a thin fluid layer from the inner to the
outer wall of a uniformly curved tube is governed by

hr+Qs=0, Q=-—11P,, P =—[Csing+h+hy, (3.1)
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FIGURE 3. Draining flow for the case C = 1 at times T = 0.1, 1, 3, 10, 103 and 10°: (a) film
thickness h, (b) pressure P, plotted as functions of ¢. The effective contact line is at oy = —0.881.

where (2.4), (2.5) and (2.8) have been rescaled using C = d/¢, Q = q/e, T = et and
P = (14 p)/e. The fluid is assumed to wet the wall, and initially h = 1; no-flux
boundary conditions are applied at ¢ = i%n. Equations (3.1) were solved numerically
in —1n < ¢ < ir, using spatial finite differences and Gear’s method in time. Similar
computations, showing the early stages of the draining flow, have been presented by
Reisfeld & Bankoff (1992) and Roy et al. (1996): here the interest is in the asymptotic
behaviour at large times. Results for three representative cases, C = 1, C = 2 and
C = 10, are shown in figures 3-5 respectively. In all cases (e.g. figure 3), fluid drains
from the inner wall, leaving at large times a vanishingly thin layer in —%TE < ¢ < o,
accumulating as a near-equilibrium lobe on the outer wall (in oy < ¢ < %n) which
corresponds to that computed in §2.4. However, the drainage takes infinite time,
according to (3.1): the film thins significantly in the neighbourhood of ¢ = oy, the
resistance to flow rises dramatically there and the pressure drop between the fluid
lobes on the inner and outer wall is concentrated in a narrowing region centred at
¢ = og (figure 3b).

Reisfeld & Bankoff (1992) computed the location of the severest local film thinning
as a function of the strength of the draining force (represented by C). Our compu-
tations confirm that the simple analytic relation Vy(ap) = 1/C (see (2.18) and figure
2b) is sufficient to determine this relationship, at least in the absence of additional
physical effects.

The rate of film thinning is plotted in figure 4, where the film thickness on the inner
wall h(—%n, T) and at the constriction h,,;,(T) are plotted versus time on a logarithmic
graph. The example chosen was for C = 2, which indicates how the thinning can
have two distinct phases, the details of which are described below: once the film on
the inner wall has thinned substantially, at intermediate times h(—in, T) ~ T~"/* and

hin ~ T2, whereas at late times h(—in, T) ~ T~'/? and hy, ~ T~3/°. In figure 5
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FIGURE 4. Thinning rates of draining flow for the case C = 2. The triangles indicate the slope of
the intermediate- and late-time approximations.
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FIGURE 5. Draining of the inner-wall lobe in the case C = 10; T'/?h(¢, T) is plotted versus ¢ for
T =1 (solid curve), 10, 102, 10°, 10*, 10° (dot-dash curve). The asymptotic scales of the dominant
maximum and minimum are indicated. The effective contact line is at ag = —0.090.

the film distribution on the inner wall, scaled by T'/2, is plotted for C = 10; in this
case the flow enters the late-time regime relatively quickly. A capillary wave develops
upstream of the constriction, and the lengthscale of the waves shrinks as additional
maxima and minima become more distinct. The detailed structure of this wave train
is described below.

3.2. Approximate solutions at large times

There is a substantial body of work devoted to the asymptotic structure of draining
flows, originating in studies by Frankel & Mysels (1962) and Princen (1963), and
characteristic flow features (such as dimples) and scalings arise in many different
contexts (e.g. foams, emulsions, the approach of a deformable bubble or drop towards
a solid or fluid interface; see Yiantsios & Davis 1990 and references therein). Drawing
on this work, a brief account of the approximate draining flows arising in the present
draining problem is given here; some details are given in Appendix B.
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Suppose that C = O(1) or smaller. The primary difference between the two
draining regimes shown in figure 4 is associated with the pressure (3.1) in the
inner-wall draining region as h — 0: in the intermediate-time draining regime, the
contribution —C cos ¢ to the pressure gradient P, (see 3.1) is weak, whereas in the
late-time draining regime this term is dominant. The late-time approximation (§3.2.2
below) is a formal asymptotic solution of the problem: the transient intermediate-time
solution (§3.2.1) is a formal asymptotic limit only for C <« 1. However, since the
intermediate-time scalings are exhibited even when C = 2 (figure 4), we can construct
an ad hoc approximation (to be justified a posteriori) which contains as a special case
the small-C limit.

3.2.1. Intermediate-time approximation

This approximation, which holds for 1 < T <« T, (C), where the transition time
T, is estimated below, resembles that described by Jones & Wilson (1978), Hammond
(1983) and others. The fluid flux is everywhere O(T /%), and the flow domain has
three distinct regions.

(i) The emptying lobe on the inner wall in —%n < ¢ < ap, in which the pressure
is approximately uniform (as in figure 3b) and the film forms a spherical cap with
h ~ T~V* (figure 4), is given at leading order by

I B g
h o m(snl 0o — SIn ¢)7 P =—Csin ¢ - W tan %o, (32)

where hy(—1m) =0, h(o) = 0 and hy(og) = —B/ T/, for some f > 0. The volume
flux, given by Q = — f_(bn/z hr dg, is

p
4TS/

cos ¢

0=

(37 + ¢) tanog +

(3.3)

cosap |

so the flux out of this region is Qy/T5/* where Qo = 1[1 + (37 + o) tan og]. Region
(i) connects to
(ii) a short quasi-steady draining region, of length O(T~'/%), in which h ~ T~1/2
(figure 4) and there is an O(1) pressure drop (figure 3b); setting
300 3Q0 _ Qo

¢ =09+ Wf, h(¢, 1) = W%(é), 0= T34 (3.4)

to match with region (i), (3.1) reduces at leading order to
V=S Heee, H~—Casé——0, H~36Easé— o0, Hyw=.M. (3.5)

Equation (3.5) has a unique solution for which ¢ ~ 1.2098 and .# ~ 1.2593 (e.g.
Wong, Radke & Morris 1995). This solution matches downstream onto

(iii) a quasi-static filling lobe on the outer wall of the tube in oy < ¢ < %n in
which h ~ CHy(¢) (see (2.16) and figure 3). Matching the curvatures at o (using
(2.16)—(2.17)), the constant 8 is given by Ko(og) — sinog = €°/(3Qy). The correction

to the equilibrium solution is

4Q, sin ¢

h ~ CHy(¢) — cosog TR

(3.6)

To establish when this approximation fails, we can compare the flux (3.3) in (i)
with an estimate of the flux, QY say, driven by the pressure gradient —C cos ¢; QY
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was neglected above. Putting the expression for 4 in (3.2) into QU = %Chz' cos ¢ yields

CB*> cos¢p . .

oYV = 3Tﬁ3/400532{:0(51n oy — sin ¢)’. (3.7)
The time T, can be estimated as that at which the fluxes (3.3) and (3.7), each averaged
over region (i), are of equal magnitude. For C < 1, it can be shown that T, ~ C~7;
even for C = 2 (as in figure 4), T,, ~ 86, indicating that the intermediate-time
approximation retains its validity for a significant period in this case. Since T, > 1
for C < 6.6 (ie. for oy < —0.22), it is clear that for sufficiently large C the system
passes directly into the late-time regime.

3.2.2. Late-time approximation

At sufficiently large times, the non-uniform pressure distribution in the inner-wall
region drives a unsteady draining flow with flux O(T—%?). The solution is again
analogous to the film drainage problem in droplet coalescence in the regime in which
gravity drives a draining flow (Jones & Wilson 1978). This approximation is valid for
T > max(T,,1)if C=0(1) and for T > C'1if C < 1.

(I) The unsteady emptying region on the inner wall in —%n < ¢ < ap, in which
h ~ T~'2 (as in figure 5), is governed (from (3.1)) at leading order by

hr + [5Ch cos §] , =0, (3.8)
which has the similarity solution h = S(¢)/(CT)"/? where (S* cos ¢)4 = 35, so that
1 ¢ ds V2
S(p) = ———= — . 39
(¢) (COS ¢)1/3 |:/_7_C/2 (COS 5)1/3:| ( )
For oy < 0, this function is well approximated in —%n < ¢ < o by

43

3584./6

so that the fluid layer is of near-uniform thickness in this region. The flux out of the
region is 1S3 cosag/(CT?)"/? where Sy = S(%); fluid is driven into

(IT) a short transition region near ¢ = oo of length O(T~'/%) in which the pressure
gradient due to curvature balances that due to azimuthal surface tension, generating
a capillary wave train (figure 5). Setting

_ ¢ S\ S _S§cosag
b=t i () MOT) = GpEO@. Q= g

(3.11)

S~ () + L)@+ 17+

(p+in)+0 ((¢+1in)°), (3.10)

(3.1) becomes, at leading order,
1=G(1+Gy), G-1 as E——m, G~IA4E as &>, (3.12)

where

T 1/6
S;C3 cos? oco] (3.13)
The downstream boundary condition, which matches onto the equilibrium region (II1,
below), is both weakly time-dependent (3.13) and a condition that does not strictly
apply in the limit ¢ — co; this is a non-standard problem with a complicated structure
(Wilson & Jones 1983), the details of which are given in Appendix B. There it is shown

A= (KO — Sil’lO(()) |:
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that embedded in region (II) are a number of subregions (such as that representing
the local maximum shown in figure 5 in which h ~ T~ over a lengthscale of
O(T~%?%)), although the only region of practical interest is
(IIa) a quasi-steady drainage region, analogous to (ii) above, of length O(T—3/10),
in which h ~ T—3/3 (see figures 4 and 5 and (B4) below) over which there is an O(1)
pressure drop. This connects to
1

(IT) a quasi-steady filling lobe on the outer wall of the tube in oy < ¢ < 37, in

which h ~ CHy(¢); the fluid volume approaches its equilibrium value like T2,

These asymptotics confirm that the lubrication-theory approximation remains self-
consistent as the infinite-time singularity is approached, and that at large times it
is reasonable to approximate the film distribution using the leading-order ‘outer’
solution, namely 4 = 0 in —%71: < ¢ <op, h=CHy(¢p) in oy < ¢p < %TC.

4. The stability of uniform lobes to axial perturbations

We now consider the stability of axially uniform equilibrium lobes, such as those
shown in figure 2(a), which represent the asymptotic large-time solution resulting
from the draining flow described in §3. A portion of the inner wall of the tube is
treated as dry and the outer-wall lobe is assumed to wet the wall with zero contact
angle. It is likely that provided ¢ is not too large, this lobe will be unstable to
long-wavelength capillary disturbances. Since such lobes exist even in the limit 6 — 0,
we cannot recover directly the stability results of Goren (1962), say, for a cylindrical
interface because (unlike Reisfeld & Bankoff 1992, who examined the stability of
the near-uniform but unsteadily draining film) we are starting from a different basic
state. The dynamic calculations of these authors apply to the initial evolution of the
interface; here we are interested in any resulting equilibria, reached at a much later
stage. We proceed by identifying the bifurcation structure of steady solution branches
governed by (2.10)—(2.15), from which dynamic stability results can be inferred.

The linear stability of the uniform states is considered in §4.1 and weakly nonlinear
theory is used to describe the branch of steady solutions near the critical wavenumber
in §4.2; numerical finite-amplitude solutions are presented in §5 below.

4.1. Linear stability theory

We first perturb the uniform lobe, looking for marginally stable eigensolutions with
period L. At a bifurcation point, two solutions co-exist for the same parameter values,
so that the perturbation of the uniform state should have zero pressure and volume
contribution at leading order. We set H = Hy(¢) + ¢hi(¢)cos(4s) for some ¢ < 1,
where 4 = 2n/L, substitute this into (2.10)—(2.15) and linearize. The zero-pressure
perturbation satisfies

(L= 2k +higy =0, hiy(zm) =0, o <¢<3m, (4.1)
so that
hy = Ajcos [(1 —4%)'(3n — ¢)] (4.2)

for some constant 4;. The leading-order boundary condition at the contact line,
hi(op) = 0 (a direct consequence of the zero-contact-angle condition), implies that

-2
1221—<1—2“°> ) (4.3)

T
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FIGURE 6. The critical wavenumber 4 plotted against 100 (a) and C = d/e (b).

The critical wavenumber A is plotted as a function of o and of the corresponding
value of 0 /e in figure 6. We anticipate that perturbations with wavenumbers in the
range (0, ) will be unstable, with strictly positive growth rate. For very weak curvature
(6 — 0), the lobe wets almost the entire tube wall (¢ — —n/2) and 2> — %; this
differs from the classical result of Rayleigh (1879) for a straight cylindrical interface
(4 = 1) because of the differing boundary condition at ¢ = —%n, but is consistent
with Davis (1980), who identified this as the critical wavenumber for a cylindrical
rivulet pinned to a wire. Vanishingly small centreline curvature therefore reduces the
range of unstable wavenumbers. As ¢ increases, more of the inner wall becomes dry
and the range of unstable wavenumbers shrinks, until 2 = 0 for og = 0; 4 is not real
for ap > 0. Thus once some part of the outer wall becomes dry, the axially uniform
lobe is linearly stable to capillary instability.

It is therefore possible to draw the neutral stability curve in (L, ¥")-parameter space,
as shown by the curve NC; in figure 8 below. An axially uniform lobe with contact
line at ¢ = o is represented by the line ¥~ = 2LV,(xp) in the (L, ¥")-plane, where Vj
is given by (2.18) (see also figure 2b). The neutral curve lies above the asymptotic
boundaries of stability 2> = 3 (L = 4n//3) and 09 = 0 (¥~ = L(n* — 8)/(4n)), shown
as dotted lines in figure 8. For fluid of fixed volume in a tube of fixed curvature,
increasing the tube length L is both destabilizing (allowing capillary instabilities to
develop) and also stabilizing (because the contact lines of the uniform lobe move
from the inner to the outer wall of the tube). There is a minimum value of ¥~ ~ 3.718
(at which oy &~ —0.1397) below which the lobes are linearly stable. Neutral curves for
solutions with wavelength 2L and 3L have also been plotted on figure 8 as curves
NC, and NC; respectively, using the observation that any solution with parameters
(L, 7") is equivalent to solutions with parameters (nL,n?") for n = 2,3,... etc.

We have not proved here that disturbances with wavelength longer than 27/ are
unstable. However, using (2.8) one can compute the growth rate of linear perturbations
to the static lobes (subject to suitable approximate conditions imposed at the contact
line) and show that, as expected, positive growth rates exist for sufficiently long
waves. This behaviour is entirely consistent with that expected from straight-tube
calculations. The question of which wavelengths grow the fastest is not addressed in
the present study, however, and the unsteady behaviour of the lining of a long curved
tube remains to be investigated.
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4.2. Weakly nonlinear theory

It is helpful before proceeding further to review the axisymmetric equilibrium fluid
distributions that can arise in a straight cylindrical tube. Suppose a fluid of fixed
volume @V lines the interior of a tube of length aL and radius a, with V < nL;
L may be treated as a bifurcation parameter. For sufficiently small L the fluid lines
the tube uniformly, with a cylindrical interface of radius a#, say, where 0 < # < L.
As L is increased through 2n% this interface becomes unstable to axially varying
perturbations. A branch of unduloids bifurcates from the cylindrical solutions at
this critical wavelength. The wavelength of the unduloids falls as their amplitude
grows from zero, making this bifurcation subcritical, and implying that the unduloids
are unstable solutions. This is consistent with the work of Nayfeh (1970), who
used the method of strained coordinates to demonstrate subcritical instability for an
inviscid jet, and with Newhouse & Pozrikidis (1992), who showed numerically that a
finite-amplitude unduloid solution is unstable in a related viscous problem. Provided
V < 1.74n (Everett & Haynes 1972), the unduloids can grow in amplitude until
circular contact lines are formed around the tube, yielding localized collars (which,
like the lobes in figure 2a, wet the tube wall with zero contact angle); these wetting-
collar solutions are stable, representing the large-time asymptotic state reached after
an axial draining flow similar to that described in §3 (Hammond 1983; Gauglitz &
Radke 1988; Johnson et al. 1991). For V — 0, which represents the thin-film limit
studied by Hammond (1983), the unduloids and collars have constant wavelength 27
at leading order, so the bifurcation in this case is degenerate; higher-order terms in
film thickness are required to show that it is subcritical.

By investigating (2.10)—(2.15) with the method of multiple scales, we seek to establish
below whether the corresponding bifurcation of the axially uniform lobes in a curved
tube are super- or subcritical, and hence whether the resulting wavy solutions are
stable or unstable. Although supercritical behaviour might not be expected, it was
demonstrated in a related problem by Brown & Scriven (1980), who studied wavy
perturbations of an interface pinned to a slot.

We introduce two new variables, x = s and X = &%s, for some ¢ < 1. Hereafter,
x and X are regarded as independent of each other, and solutions are sought with
varying length. The uniform solution is perturbed as follows:

H(¢7 S) = HO(d)) + 8H1(¢5 an) + 82H2(d)’ an) + 83H3(¢)7 X,X) + 0(84)a (44)
a(s) = o + eay(x, X) + e2on(x, X) + 3 o3(x, X) + O(*), (4.9)
K =Ko+ ¢K; + K, + K35 + 0(&%), (4.6)

with —%n < o9 < 0. At leading order we recover (2.16) and (2.17), noting that
H{ = Hogp(g) > 0 and Hy' = Hopgp(o) < 0. It is convenient in the remainder
of this section to parameterize solutions by o, rather than the volume 7": in
this way, increasing L is always destabilizing. We therefore impose the constraint
" = 2LVy(0p), which is equivalent to crossing the neutral curve in figure 8 along a
straight line passing through the origin of the (L, 7")-plane.

At O(e), (2.10) gives

Hi + Hix + Higp = Ky, Hiy(3m,x,X) =0 (4.7)
with
H; (o, x,X) =0, oy Hy + Hyg(o, x, X) =0, (4.8)
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which has the separable solution (as in §4.1)

Hi(¢,x,X) = /(X)cos [(1 —2)*(An — §p)| cos Ax+ O(X)], K;=0 (49)
for some amplitude and phase functions .« and @, where A(x) satisfies (4.3) and

—oA (X)(1 — 222 cos [Ax + O(X)]

or(x, X) = H] . (4.10)
Thus Hi, = 0 and Hy4y = 0 along ¢ = o, while H;y = —oyHogy there.
At O(¢?) we have
Hy+ Hyoe + Hypy = Kz, Hop(3m,x,X) =0, (4.11)
and along ¢ = «
lofH) +aiHig + H, =0,  oH{ + tafHy' + Hay = 0. (4.12)
The first boundary condition in (4.12) becomes H, = %oc%H()’, ie.
Ho (o, x, X) = B> cos*(Ax + O), B? = o/*(1 - 2%)/(2H]), (4.13)

so that H, is forced by terms of the form 1 and cos(2ix + 20), yielding regular
solutions of (4.11). Defining

cos [(1 — )\ (i — qb)] for0<i<1
F(¢p; 1) = 2 4.14
(#34) {cosh (22 =DV (dn—¢)] for 2>1, (4.14)
the solution of (4.11)—(4.13) can be written
i F(¢,22)
Ho(g,x, X) = Ko+ (182 — Ko) S0 4 12 F (028 e 200, 4.1
(60 X) =Ko+ (1B = Ko) £ 0+ 4B oo cos (20 +260). (415)
The remaining boundary condition in (4.12) gives
B*> [H!" 1—(2K,/B?)
X)=— O + ——=1" 1 T cos[2ix+2 4.16
a(x, X) 2H] {H{)’ + . cos [24x + 20] (4.16)
where
" 2 1)\1/2 2 \1/2¢1 1 2 3
7 _ Hj (42 1)2 1tzanh [(4/1 12) 1 2(2171 aco)} for 3 < %2 < : (4.17)
H{ —(1—4/1)/tan[(1—4/1)/(§n—oc0)] for0 < A* < 3.

To complete the second-order solution, K, in (4.15) and (4.16) is determined by the
volume constraint ¥~ = 2LV, (o). Expanding the integral for 7~ using (4.4) and (4.5)
in (2.13), retaining terms up to O(e?), the constraint yields the condition

/A 1 /A n/2

/ [%Vé,(do)(x% + V(;(Of())otz] ds + TC/ dS/ d(b H2 =0 (418)
-1/ -/ oo

from which K5(og) is found to be

B [1— (nV§/H{) + (ntanag/Hy?) (Vi Hy — ViH{')]

2 [1—(nV§/HY) — tanog (37 — o) |

K> . (4.19)

At third order,
Hs + H3 + H3pp + 2Hix = K3, Hiy(3m,x,X) =0, (4.20)
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and along ¢ = oy only one boundary condition need be considered,
H3 + OC]H2¢ + O(2H1¢ + 0(1062H6/ =+ %O(?H(/)” = O, (421)

which may be simplified to Hs(o, x, X) = oo H{ + %ocfH(’)”. Thus from (4.10) and
(4.16), H; is forced by terms of the form .o73 cos(Ax + @) and .o/3 cos(3/x + 30). The
secular forcing terms must be suppressed by a suitable choice of o/ and ©@. Since
H,.x has two terms, one involving .o/ x sin(/x + @) and the other @y cos(Aix + @), we
set o/ x = 0 and then balance the terms in cos(ix + ©).

The secular boundary-condition terms in (4.21) are of the form Z.o7> cos(Ax + @)
where

(1= | 3m— oo + (n/HP) Vi Hy — ViHy') T

- _Z 4.22
4H]? (37 — o) tanag — 1 + (nV§/HY) 2 2

with 4 given by (4.17). Figure 7 shows that # < 0 for —%n <oy <oy, and Z >0
for oy < a9 < 0 where a; & —0.059848. The corresponding contribution to Hj is of
the form Z (¢) cos(Ax + @), where

(1= 2)F + F ypp = 220x./ cos [(1 — %) *(in — ¢)] (4.23)
where 974,(%71) =0 and Z (ag) = #.o/>. The appropriate solution is
F =—240x(1 — 22" (¢p — In)sin [(1 — %) *(dn — ¢)] . (4.24)
so the remaining boundary condition implies that
RA* = 20x(1 — 122 (dn — o). (4.25)

Since .« is independent of X, we can integrate (4.25), imposing @ =0 at X =0, so
that the slowly varying phase is given by

%%2(1 _ 12)1/2

O = =)

(4.26)
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Then in the leading-order expression for the film depth,

290 072(1 — J2)1/2
H = Hy(¢) + e/ cos [(1 — 27)*(An — ¢)] cos | s | 1 + i @&/1( ~) +0(%),
;Lz(ETC — OC())
(4.27)
the wavelength of the unduloid is related to the amplitude e/ by
2 2H(1 — 2212
L= (Y 91?( 7). (4.28)
Y3 (31 — o)

Thus where # < 0 (figure 7), the wavy lobe lengthens as it grows in amplitude along
a line v~ = 2LVy(x); treating the wavelength as a bifurcation parameter, this is
therefore a supercritical bifurcation at the critical point, and the branch of steady
unduloids is stable to small perturbations. Where # > 0, the bifurcation is subcritical
and the branch of wavy solutions is unstable. The transition between the two types
of behaviour is indicated with a bullet on the curve NC; (and similarly on NC,) in
figure 8: it occurs at ¥~ ~ 4.246, L ~ 2341. As og — —%n, representing the limit
of zero centerline curvature, # — 0, so the bifurcation is degenerate in this singular
limit.

5. Finite-amplitude equilibria
5.1. Wavy lobes

We seek finite-amplitude solutions of the nonlinear free-boundary problem defined
by (2.10)—(2.15). The separable solution of (2.10) and (2.11) in Cartesian coordinates
is

H=K— %(%n — ¢)cos¢p + Asin¢p + ZAHF(d);in)cos AnS, A = MTR, (5.1)
n=1

for a(s) < ¢ < imand —1L < s < 1L, where F is given by (4.14) and K by (2.15). The
first three terms contribute to (2.16); the n = 1 term corresponds to the marginally
stable mode from linear stability theory (4.2). To impose the contact-line boundary
conditions (2.12) a numerical procedure is necessary. We follow Tuck & Schwartz
(1991) and discretize the boundary with N grid points at axial locations between s = 0
and s = %L (exploiting symmetry as far as possible), so that N unknowns describe
the location of the interface. Truncating the series in (5.1) at n = N — 1 (giving N
unknowns A, Ay,...,Ay_1) yields 2N unknowns in all. The two boundary conditions
(2.12) applied at each node on the boundary provide 2N nonlinear algebraic equations
for these unknowns, which can be solved with Newton’s method. The NAG routine
COSPCF was employed, and the Jacobian for the problem was determined explicitly.

The fluid volume 7~ and the domain length L were fixed at the start of a calculation.
The wavy solution branch near the neutral curve was found using the eigensolution
from linear stability analysis in §4.1, and path-tracking methods were used to follow
the solution to large amplitudes. Typically 20 grid points (plus 20 coefficients in (5.1))
gave reliable results: accuracy was ensured where possible using grid refinement.
However, the numerical method was prone to an instability in certain regimes of
parameter space (in particular, the points marked with small circles along curve D in
figure 8, see §5.3 below), manifesting itself as grid-scale wiggles, possibly arising from
ill-conditioning. For fixed L and ¥~ the instability became progressively worse as N
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FiGURE 8. Stability boundaries in (L, ¥")-parameter space. Beneath the neutral curve NC; axially
uniform lobes are linearly stable; wavy solutions bifurcate supercritically (subcritically) where NC;
is solid (dashed); the saddle-node curve SN emerges from the codimension-2 point (marked with a
bullet). The asymptotes of NC; are shown as dotted lines. Stable wavy solutions exist in the region
bounded by NC; where it is solid, the fold curve SN, the drop boundary D and the line ¥~ = 7.
Both SN and the line K = 1 (shown dotted) asymptote to ¥~ = ¥ as L — oo. Localized drops exist
to the right of D for ¥~ > ¥7|. Wavy solutions with wavelength nL exist above NC, for n = 2,3.

was increased. It could be suppressed to a certain extent by using a non-uniform grid
with only a modest loss of accuracy, and by this means it was possible to identify the
key features of parameter space satisfactorily.

Wavy solutions were found to bifurcate super- or subcritically along the neutral
curve NC; in figure 8, as predicted by the analysis of §4. Bifurcation diagrams for
the case ¥~ = 5 are shown in figure 9, where K and the amplitude of contact-line
variation Ao = |a(%L) —a(0)| are plotted versus L: as the tube length is increased, the
initially uniform lobe first loses stability (at L ~ 10.72) to a branch of stable, wavy
solutions through a supercritical pitchfork bifurcation; this wavy branch terminates
at a saddle-node bifurcation at L ~ 36.47, where it meets an unstable branch of wavy
solutions which bifurcates subcritically from the uniform-lobe branch at L ~ 29.80.
The saddle-node point was tracked numerically across parameter space and is shown
as the curve SN on figure 8, emanating from the codimension-2 point on the neutral
curve. For large L there is hysteresis in the transitions between uniform and wavy
states (figure 9), and for points lying between the curves NC; and SN in figure 8 there
exist three steady states, two of which are linearly stable. Figure 9(a) shows how the
pressure of the uniform solution is non-monotonic as L increases and the contact line
moves from the inner to the outer wall (see figure 2¢): K falls to its minimum value
%n at L ~ 33.61.

Examples of wavy lobe solutions along the line ¥~ = 5 are shown in figure 10(a—
¢). A small-amplitude solution (L = 10.8, figure 10a) shows a weak bulge in the
contact line where the film is thickest. Further along the wavy solution branch
(L = 15, figure 10b), the distortion of the lobe is much more pronounced, and the
film has become very thin at each end of the domain (H(3m, 1L) ~ 0.0502). As L
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FIGURE 9. Bifurcation diagrams for the case ¥~ = 5: solid curves show stable solution branches,
dashed curves represent unstable solutions: (a) the pressure variable K and (b) and contact line
amplitude Ao = |o(0) — a(%L)| are plotted against L.

increases further (e.g. L = 30, figure 10c), the amplitude and pressure of the solution
change very little (figure 9), but the solution develops a solitary structure, with long,
thin arms that extend to either side of the blob of fluid centred on s = 0; in this
case H (%n, %L) = 0.0550. The arms correspond closely to the uniform-lobe solution
(2.16), (12.17) having the same pressure as the wavy solution, i.e. K ~ K(c.), where
o = o(5L).

5.2. Solitary solutions

The behaviour of solitary solutions such as that in figure 10(c) can be understood
by fixing L and varying 7. Bifurcation diagrams for the case L = 30 are shown in
figure 11. At small 7~ the fluid is confined to a uniform lobe that lies entirely on
the outer wall of the tube. As ¥~ increases through 4.463 the contact line of this
lobe moves onto the inner wall, and the pressure in the lobe falls (i.e. K in figure
11a rises). Shortly afterwards, at ¥~ =~ 5.026, the uniform lobe loses stability to an
unstable branch of wavy lobes, which corresponds to crossing NC; in figure 8. This
unstable branch and a large-amplitude stable wavy-solution branch (see A« in figure
11b) originate at a saddle-node bifurcation at ¥~ =~ 4.713. Along the stable branch,
solutions have a solitary structure such as that shown in figure 10(c) for ¥~ = 5. As
¥ increases, K increases towards 1 (figure 11a) and the arm half-width & = %n — o
shrinks to zero (figure 11¢). From (2.16)—(2.18), one can show that in the limit & — 0,
the arms have the asymptotic structure
2 &’

HO(d)) ~ i [&2 - (%TE - d))z] s Ko(oe) ~ 1 — %&29 Vo(oe) ~ E’
where |%n — ¢| < &. Thus the film height, of O(&*), falls to zero much faster than the
arm-width 2& shrinks, and the volume of fluid in the arms falls very rapidly. A typical

(5.2)
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FIGURE 10. Wavy lobe solutions for ¥~ = 5 with N = 20, showing film depth H against ¢ and s for
(a) L =10.8, (b) L =15, (¢) L = 30. Panel (d) shows a solution with L = 30, " =7 and N = 20.
Different s-scales are used in each figure; contours are plotted beneath each surface at H = 0, 0.01,
0.05, 0.1, 0.3, 0.5, ... where appropriate.
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Ficure 11. Bifurcation diagrams for the case L = 30: solid curves show stable uniform or
wavy solution branches; dotted curves represent unstable solutions; dashed curves represent stable
localized drop solutions; the dot-dash curves represent the wavy solution branch with wavelength
L = 15. Panels show (a) the pressure variable K, (b) the contact-line amplitude Ao = |o¢(%L) —o(0)]

and (c) the arm half-width & = %n — o, all plotted against 7. Bullets mark the point at which the

solution changes topology, becoming a localized droplet.

solution is shown in figure 10(d), for which ¥~ = 7: in this case, H(3m, 1L) ~ 0.00049.
Because the film becomes so thin, the numerical method breaks down before K — 1:
extrapolation of the results in figure 11 suggest that this limit is reached as ¥~ — 7.30.
The behaviour of the fluid blob for larger ¥, once the arms have vanished (represented
by the dashed line in figure 11), is discussed in §5.3 below. Also shown in figure 11
with a dot-dashed line is the branch of wavy lobes with wavelength L = 15, which
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bifurcates supercritically from the axially uniform solution on crossing the curve NC,
(see figure 8).

The asymptotic behaviour of the solitary solutions (e.g. figure 10c,d) can be
exploited to infer some important features of the stability diagram in figure 8.
Consider the branch of wavy solutions along a line L = L, say (e.g. L = 30, figure
11), parameterized by varying volume. Suppose that for ¥~ = ¥7,, say, the wavy
solution has a solitary structure and pressure K = K, where %n < K, < 1, so that
K, = Ky(o.) (see (2.17) and figure 2¢). These arms can be extended indefinitely
beyond s = —_F%L without the pressure or the amplitude of the solution changing.
Since the arms occupy volume 2Vy(x.) per unit length (see (2.18)), there exists a
family of solutions for L > L, with constant amplitude and pressure along the line
in (77, L)-parameter space given by

Y =9+ 2Vo(a) (L — Ly). (5:3)

By computing a sequence of solitary solutions along the line L = L;, and hence a set
of lines (5.3), we can construct much of the surface of wavy solutions for larger L.
It is possible, for example, to find where neighbouring lines of constant pressure and
amplitude given by (5.3) intersect; the envelope of such intersections corresponds to
the curve SN in figure 8, which marks a fold in the solution surface. Treating ¥, as
a function of o, alone, this curve is defined parametrically by
p(%) ” p(%e)
L=Li=qpess 7=V = Vol
Note that Vi(a.) < O (figure 2b), and 77 (x.) > 0. Explicit computations of the
location of the fold-curve SN agree very well with this asymptotic approach using
L, = 34.

As o, — %n, the slope 2Vy(a.) of a constant-amplitude line (5.3) in (L, ¥")-space
tends rapidly to zero (see (5.2)). In the limit, therefore, there is a line in parameter
space, ¥~ = ¥"y, say, for L > L,, along which K = 1 and for which the solitary
solutions have vanishingly narrow arms. From figure 11, ¥"; &~ 7.30. Using (5.4), it
can be shown that the curve SN given by (5.4) asymptotes to the line ¥~ = ¥ as
L — oo (see figure 8). The location of the line K = 1 for smaller values of L was
determined by computing appropriate wavy solutions with 9.256 < L < 13.75, and
is shown by a short dotted line in figure 8. It asymptotes rapidly to the boundary
¥ =" as L increases, implying that the asymptotic solitary solution structure exists
for a wide range of L. It is shown below that the boundary ¥~ = ¥7; represents
an important change in the liquid-lining topology, separating wavy solitary solutions
from localized droplets.

(5.4)

5.3. Localized droplets

In a straight tube, a sufficiently small volume of fluid can form a single localized,
axisymmetric, stable wetting collar (Everett & Haynes 1972; Hammond 1983) which
has two circular contact lines and which wets the wall between them; the wall is
effectively dry beyond. If the tube has radius a and length aL, the contact lines are a
distance 2na apart and the collar can be regarded as an equilibrium fluid distribution
for all L > 2x. Such localized solutions can exist because the azimuthal curvature
term eh in (2.4), which tends to draw the interface towards the centre of the tube,
competing against the axial curvature term ehg, has the capacity to confine a small
volume of fluid to a finite length of tube. If a collar is perturbed very weakly, either
by centreline curvature or gravity, a draining flow from the inner to the outer wall
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FiGure 12. Bifurcation diagram for ¥~ = 8, computed with N = 16, showing (a) pressure K and
(b) amplitude Aa: solid (dotted) lines show stable (unstable) uniform or wavy solutions; the dashed
line represents the localized droplet solution for this value of 7.

will arise, but the fluid is unlikely to spread far along the tube. We therefore expect
that for large ¥ (i.e. small §) the resulting equilibrium state will be well approximated
by a localized droplet with a closed contact line, lying predominantly on the outer
wall of the tube. Just as axisymmetric wetting collars represent a limit point of the
branch of steady unduloids in straight tubes, at which the film thickness tends to zero
at some point, so we expect that localized droplet solutions in a weakly curved tube
will represent the limit point of a branch of stable wavy solutions, at which wavy
contact lines meet at ¢ = %n. The confining effect of azimuthal curvature may be
overcome by sufficiently strong centreline curvature, however, so that for ¥~ beneath
some critical value (i.e. for sufficiently large J), localized droplet solutions will not
exist.

Now a necessary condition for the existence of a localized droplet solution is that
K > 1. This can be proved by constructing the asymptotic solution for the droplet in
the neighbourhood of the intersection of its contact line with ¢ = %n. We do so by
introducing scaled coordinates (S, @) using a small parameter é, where s = —%L+€2S,

¢p=1in+édand H = &4 . Then (2.10) becomes
EH A ER gy + Hgs + (1 — 130 + L&t + ) =K. (5.5)

The curved droplet boundary will be locally parabolic, given by the curve &> = DS in
S = 0 for some D > 0; applying the boundary conditions # =0, 20# —DH's =0
along this boundary, the leading-order solution of (5.5), i.e. of #'ss =K — 1, is

H(®,8) ~ YK —1)[S—(#*/D)]’,  0<S<&/D, (5.6)

and so # > 0 within the droplet requires K > 1.
The critical value of ¥~ beneath which no droplet solutions exist is therefore ¥ (see
figure 8). For wavy solutions with ¥~ < ¥7; for which K < 1, the effects of centreline
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FIGURE 13. Contours of H for ¥ =8, N =16 and (a) L =9.2, (b) L = 10.2, (¢) L = 11.2 and (d)
L = 12.03. The bullets show the location of the grid points along the contact line. Contour values
are H =0, 0.1, 0.3, ... where appropriate.

curvature demand that the fluid spread along the tube wall to the boundaries of the
domain, and either wavy or uniform-lobe solutions exist. For ¥~ > ¥, however, as
the wavy solutions grow in amplitude with increasing L, they approach a limit point
at which the contact lines meet at s = i%L, corresponding to the formation of a
drop. Bifurcation diagrams for the case ¥~ = 8 (figure 12) illustrate such a transition:
the uniform lobe loses stability to a stable wavy lobe at L ~ 9.156; the post-critical
wavy-lobe solution at L = 9.2 is shown in figure 13(a); the amplitude of the wavy
lobe grows rapidly (e.g. figures 13b and 13c¢ for which L = 10.2 and L = 11.2) until
L ~ 12.03 (figure 13d), where the contact lines meet at ¢ = %n and the topology of the
solution changes abruptly. For larger L the solution is unchanged (this is represented
by a dashed line on figure 12) since increasing the length of dry wall either side of
the droplet will not change the solution’s amplitude or pressure.

This example was taken from a region of parameter space in which it was necessary
to employ a non-uniformly spaced grid (shown with bullets in figure 13) in order
to suppress numerical instabilities. The maximum reliable resolution achievable for
these parameter values was N = 16 (i.e. 32 unknowns). An unfortunate consequence
of this was the loss of resolution at s = —_i-%L. Although all the eigenfunctions in (5.1)
satisfy periodic boundary conditions at s = i%L, the discretized boundary fails to
capture what would be a narrow neck akin to the structure in figure 10(d). The neck
shares the scaling used in (5.5), so that if the neck width (in ¢) is O(é), its length (in
s) is O(€%). Thus in figure 12, when the domain length L is O(¢é?) shorter than the
length &, say, of the droplet (indicated with a bullet), the pressure perturbation is
0(&*) = O(& — L) (from (5.5)) but the amplitude perturbation is O(¢) = O(¥ — L)'/?,
explaining the linear and quadratic shape of the wavy solution branches in figures
12(a) and 12(b) respectively at the bifurcation point. The short lengthscale of the
neck as é — 0 represents a challenge to any discrete representation of the solution,
which the present method fails to meet. An attempt was made to compute the
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droplet solutions directly using Newton’s method in polar coordinates centred on the
mid-point of the droplet; in this case the eigenfunction expansion in (5.1) is of the
form Y anJam(r) cos 2m0. Since Bessel functions decay rapidly with m for fixed r,
severe ill-conditioning made it impossible (using orthogonality conditions) to estimate
the coefficients a, beyond the first few for a solution such as that in figure 13(d),
preventing the scheme from converging to any sensible solution. However, since
quantitatively similar results to those in figure 11 could be achieved in a Cartesian
geometry with smaller N (e.g. with N = 10 the length of the blob with V' = 8 was
approximately 12.14, only 1% different from 12.03 in figure 13d), it was judged that
these results provide a reasonable approximation of the bifurcation structure in this
regime of parameter space, even though some details of the solutions are not fully
resolved.

A set of such points at which the wavy solutions (computed using grids as in figure
13) become localized droplets is plotted as curve D on figure 8. (A conservative
estimate of the error in the location of this curve can be made by assuming the error
in L for fixed ¥~ is bounded above by the largest grid spacing in figure 13d; this
yields a relative error in L of about 5%.) The curve joins with the line K = 1 near
L ~ 13.75, and asymptotes towards NC; as ¥~ becomes large. The amplitude and
pressure of the droplet solutions along D are shown with a dashed line in figure
11. As 7" increases through 77y, and the solution in figure 10(d) loses its arms, K
rises smoothly through 1 (figure 11a); the drop width (in ¢) grows slowly beyond
the bifurcation point (figure 11b), while its length (in s) falls slowly (figure 8). The
droplets always have a large aspect ratio, however (figure 13d).

6. Discussion

Weak centerline curvature (or equivalently a weak transverse gravitational field)
has been shown to have a profound effect on the equilibrium distribution of a
thin liquid layer lining the interior of a tube. Draining flows are generated that
cause the formation of structures centred on the tube’s outer wall, either axially
uniform lobes, or wavy lobes or localized droplets. These equilibria, which have
been computed assuming that the fluid wets the wall with zero contact angle, are
governed by a forced Helmholtz equation (2.10): although this PDE is linear, the
nonlinear boundary conditions associated with the free contact line (2.12) allow for
multiple steady solutions. The regions of (L, ¥")-parameter space in which each class
of solution arise are presented in figure 8. In long tubes there can be hysteresis
in transitions between wavy and axially uniform solutions (shown on bifurcation
diagrams in figures 9 and 11); the stable wavy solutions in this case generally have a
solitary structure (e.g. figure 10c,d). Multiple steady solutions can also arise at large
7" (ie. for larger fluid volumes or for weaker centerline curvature), where droplet
and wavy solutions can coexist (e.g. figure 11). In comparison to straight tubes,
centreline curvature suppresses capillary instabilities of thin films (see §4.1), but by
breaking the symmetry of the system the bifurcation structure is enriched. Over those
regions of the tube wall that are not wetted by equilibrium solutions, there is a slowly
draining, vanishingly thin fluid layer (figures 3-5). In practice, intermolecular forces
will ultimately determine its fate: if they are stabilizing, the draining will stop once
the fluid layer reaches a critical thickness (Reisfeld & Bankoff 1992), in which case
the equilibrium solutions computed here will remain valid ‘outer’ approximations; if
the forces are destabilizing, however, the liquid lining will rupture, presumably where
the film is thinnest, and new equilibria will arise which have non-zero contact angles
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at their contact lines. In the latter case some of the fluid will be trapped in satellite
structures on the inner wall or between larger localized droplets on the outer wall.
Stability boundaries analogous to those in figure 8§ will be significantly affected by
such non-wetting effects.

For (L, ¥")-values to the right of the curve D in figure &, an initially uniform film is
predicted to drain ultimately into a localized droplet with volume ¥~ (or, beyond NC,,
say, a wavy lobe with wavelength %L may possibly be reached). It would be valuable
to compute the corresponding unsteady, two-dimensional draining flow using (2.8)
with k¥ = 1, because (i) it would reveal the possible transient satellite structures that
develop between adjacent droplets and the associated non-planar large-time capillary
wave trains (cf. figure 5) adjacent to the droplet’s contact line, (ii) it would provide
an independent means of computing the localized droplet solutions along curve D in
figure 8, and (iii) it would allow comparison between the predictions of the present
static stability results (which considers solutions that in principle take an infinite time
to develop) and a fully dynamic calculation. A study of long distributed systems
that are not tightly constrained by periodic boundary conditions at each end of the
tube would also be of interest, since there is the potential for both localized droplets
and wavy, solitary solutions in a very long domain to have an irregular distribution
along the tube, raising intriguing questions about the pattern-forming properties of
this system; energy methods based on spinodal decomposition (Appendix A; Mitlin
1993) may prove valuable in this regard. The author is presently unaware of any
published experimental data with which to test these ideas.

A major aim of this work is to help develop an understanding of the factors
controlling the liquid-lining distribution in a pulmonary airway bifurcation. Key
conclusions from the present study are that a thin liquid lining in an airway with
a non-uniformly curved wall will experience a pressure gradient driving a draining
flow: even if curvature gradients are weak and the airway short, the flow is felt
as a singular perturbation making some draining inevitable, although the rate of
drainage may be slow. If an individual airway is sufficiently long (and the effects of
gravity can be neglected), axially varying capillary instabilities may develop, provided
transverse curvature gradients are sufficiently weak; typically, the mean length of an
airway is roughly 7 radii (see, for example, Grotberg 1994), which is close to the
critical length 47/ f ~ 7.255 (the vertical dotted line in figure 8) beyond which wavy
equilibria arise. The present theory could in principle be extended to determine the
possible liquid-lining equilibria (if they exist) in an accurate morphological model
of a bifurcation. Steps in this direction could be taken by considering tubes with
non-circular cross-section (for draining flows in a polygonal capillary see Wong et al.
1995, for example), tubes with non-uniform centreline curvature and torsion (e.g. at
a bend or twist in a pipe), and tubes with tapering cross-section. The latter effect, in
particular, will drive axial flows (Halpern, Jensen & Grotberg 1996). Such flows are
likely to have significant interactions with capillary instabilities, and careful treatment
of moving contact lines may be necessary.

The neglect of gravity in the preceding discussion was a significant assumption. The
relative importance of draining flows driven by gravity to those driven by centreline
curvature is represented by the parameter

B pa’g
== (D
(see §2.1). In the terminal bronchioles of the lung, Kamm & Schroter (1989) estimated
B ~ 0.03. In larger airways, gravity may therefore be the dominant cause of draining:
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however, provided B is not too large, and the airways are suitably oriented, the
present theory remains applicable. In tilted tubes, the axially uniform lobes represent
the solution for unidirectional flow. Curvature effects are likely to be of greater
significance in the smallest airways, in conditions of weak buoyancy (i.e. under
liquid ventilation or microgravity), in conditions of elevated surface tension (perhaps
associated with surfactant deficiency) and in locations of highly non-uniform wall
curvature, such as at the apex of a bifurcation.

It is also helpful to consider the effect of weak wall-curvature gradients on thick
fluid layers (as might arise in diseased lungs), because of the increased dangers of
airway closure in this case. Thin liquid layers feel the effects of non-uniform wall
curvature very strongly, so much so that some part of the inner wall of the tube
is always left effectively dry. For thicker layers, these effects will be less dramatic,
and it should be possible for the inner wall to remain wet for sufficiently large fluid
volumes. A simple example helps to demonstrate these ideas. In a straight tube of
radius a, a meniscus of fluid wetting the tube wall with zero contact angle exists
provided the fluid volume exceeds %mﬁ (Everett & Haynes 1972). The solution with
minimum volume has two hemispherical interfaces that touch along the tube axis, and
two parallel, circular contact lines a distance 2a apart. A similar solution exists in a
tube with uniform centreline curvature a/d, whereby the two hemispherical interfaces
touch, but not along the tube centreline, and the contact lines are circles lying in
planes that intersect at the centre of centreline curvature. In this case, the minimum
fluid volume is given by

Vmin 2

= SsinT o —§~ 54107+ 000 (6.2)

as 0 — 0. The distance along the tube centreline between the planes of each contact
line is then a(2 + %52 + 0(6%)). Thus the tube length and fluid volume necessary for
the existence of a meniscus are larger than in the straight-tube case, so in this sense
centreline curvature has a weak stabilizing effect on meniscus formation and airway
closure. Since the fluid interface of a meniscus is close to the wall only along contact
lines, centreline curvature has only a weak overall effect, appearing as a regular
perturbation at 0(5?), instead of a singular perturbation at O(d), as is the case for a
thin film.

The analogy between the effects on a thin film of weak centreline curvature and a
weak gravitational field will break down once 6 and € are no longer small. Studies of
how thicker films respond to stronger gravity, particularly in the presence of an axial
flow, would be relevant to core—annular flows in which a lubricated oil core rises to
the top of a horizontal pipe, displacing the lubricating water layer around it (see, for
example, Joseph & Renardy 1993). Thin-film flows driven by the combined effects of
strong curvature gradients and gravity can be treated using the evolution equation
of Roy et al. (1996); their computations of the curvature-driven flow of a thin film
on the exterior of a tightly curved torus show strong similarities with the draining
flows in §3. A further potential application of these draining calculations is to the
related squeeze-film problem encountered in the pleural space, in which the buoyant
lung rises to the top of the pleural cavity, and fluid drains down around it (see, for
example, Grotberg 1994). The present results may also be relevant to the distribution
of the thin mucus layer lining the eustachian tubes, which are potentially susceptible
to both gravitational and curvature-driven forcing.

The airway liquid lining in a healthy lung is covered with a surfactant monolayer,
one purpose of which is to stabilize the interface against capillary instabilities (e.g.
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Otis et al. 1993; Halpern & Grotberg 1993). In the delivery of artificial surfactant to
the surfactant-deficient lung of a severely premature infant, an exogenous monolayer
spreads along an airway under the action of surface-tension gradients. The modelling
of such flows has typically assumed that the airway is a straight cylinder and the
liquid lining is azimuthally uniform (e.g. Jensen & Grotberg 1992; Espinosa et al.
1993 and references therein). In a weakly curved airway two competing effects will
influence the monolayer’s progress. First, if the liquid lining is distributed uniformly
around the tube, the surfactant will advance quicker along the inner wall (I, figure
1) since it has less far to travel than on the outer wall (O), an effect contained in
(2.6); at the leading edge of a spreading monolayer, the surfactant concentration
will therefore be O(d) larger on I than on O. Second, the surface-tension-driven flow
induced by centreline curvature causes the liquid lining to drain to the tube’s outer
wall (see §3), and since the monolayer travels quicker over deeper fluid it will spread
faster along this wall, provided the fluid forms a continuous lobe; the monolayer
concentration will then be larger on O than on I by an O(1) amount. Of these two
opposite effects, the second is likely to be substantially stronger in general. Thus
readjustment of fluid under wall-curvature gradients will therefore have important
implications for surfactant transport in the lung, particularly in the neighbourhood
of an airway bifurcation.

Appendix A. Energetics
Consider solutions of (2.8) in a domain of fixed length L, of fixed volume V', where

Vo= (h)=2 / 7 s / //22 d¢ h(s, p, ). (A1)

L/2

We can define an energy E = <—(1 + o sinp)h — Jeh® + %e|§h\2> . Solutions for which

E is stationary under variations in h, subject to the constraint V' = constant, satisfy
O(E — pV)/oh = 0 for some Lagrange multiplier p. It follows that p is exactly the
pressure p, given by (2.4). Equation (2.8) with k¥ = 1 can then be written in a standard
form (e.g. Mitlin 1993)
A ~O0E

hy=V- (;mvéh) . (A2)
For static solutions, either h = 0 or p = 0E/dh is uniform. A contact-line condi-
tion (that the fluid wets the wall with zero contact angle) is required to determine
these solutions fully; this yields (2.10)—(2.15). Multiplying (A 2) through by dE/oh,
integrating over one wavelength, applying the divergence theorem and the no-flux
conditions around the perimeter of the domain, it follows that

dE 113
- <3h

Thus the energy E decreases as the flow evolves, and for static solutions dE/dt = 0.
The system approaches one of the stable equilibrium states as t — oo.

OE
Von

2
> <0. (A3)

Appendix B. Large-time asymptotics: the capillary wave train

In region (II) the leading-order problem is given by (3.12) and (3.13). By stating
the problem in this non-standard way a solution can be obtained directly. In this
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problem solutions cannot be approximated by functions with simple power-law time
dependence; they have a more complex unsteady behaviour that can be captured by
allowing time to parameterize solutions of (3.12).

Far upstream, G ~ 1+ aj exp [13'3¢] cos (13%5(& — ay)) as & — —oo for constants
a; and a,, a decaying wave corresponding to those in figure 5. Far downstream,
solutions of (3.12) develop large nonlinear relaxation oscillations which increase
rapidly in amplitude and wavelength as ¢ increases (Wilson & Jones 1983). These
can be approximated using matched asymptotic expansions. The outer solution for
oscillation n, say, has G > 1 and is governed at leading order by 0 = 1+ G;.¢, so that

G~ %Cn(f - én)2 - %(é - 611)39 fn < é < én+l = én + 3Cna (B 1)

for some constant C, > 0. This solution satisfies G = G; = 0 and G = C, at & = &,
G=GW, =3Clat{=¢&,+2C, and G =0, G; = —3C} at & = &,,y. Oscillations n
and n+ 1 are related by the inner solution which applies over a very short lengthscale

at £,,q, for which G < 1 and
1=GGee, G~—fi& as E——oo, G~ 3p& as E—oo, (B2

where ff; = %C,f and f, = C,4. The inner problem is related directly to the canonical
problem (3.5) by scaling G by B, & by f;* and setting f, = B%. Thus

. 2 % \* 35%
G(mi—rtl)N 33C6 =%<C 1) Cut1 ==—=C)’ (B3)
n n+

as n — oo, and the lengthscale of the inner region is O(C, %) ~ O(Cnfl/s).

We can now match the upstream end of oscillation n + 1 at &, to the filling lobe
solution in region (III), by taking C,; = 4 ~ TV, Fixing C,;; as a function of T
yields C, ~ T/, C,_; ~ T/ and hence the full asymptotic solution for G. The
film is thinnest over a short region equivalent to the inner region at &,,, so that

1/5
SSM5%3 cos? oy 1"

hmin ~ .
C3(Kg — sinog)3 T3

(B4)

(as in figures 4 and 5) and the lengthscale of the constriction is O(T~¥/1?), yielding
region (IIa). The local maximum in film height just upstream of the constriction
(equivalent to the maximum of oscillation n) has h ~ T~%/? (figure 5) over a length-
scale O(T~¥?%) (region IIb, say). Continuing further upstream, the next minimum
has h ~ T/ (region Ilc) over a lengthscale O(T /%), the next maximum has
h ~ T=9/20 over a lengthscale O(T3%/?%) (region 1Id), and so on. These quantities
are in practice indistinguishable from h ~ T~'/? and the O(T~'/°) lengthscale (region
II) for all but the very largest times, so only the capillary wave immediately upstream
of the constriction is likely to exhibit its asymptotic scalings as T — co.

REFERENCES

BRETHERTON, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166-188.

Brown, R. A. & Scriven, L. E. 1980 On the multiple equilibrium shapes and stability of an
interface pinned on a slot. J. Colloid Interface Sci. 78, 528-542.

Davis, S. H. 1980 Moving contact lines and rivulet instabilities. Part 1. The static rivulet. J. Fluid
Mech. 98, 225-242

Espinosa, F. F., SHAPIRO, A. H., FREDBERG, J. J. & Kamm, R. D. 1993 Spreading of exogenous
surfactant in an airway. J. Appl. Physiol. 75, 2028-2039.



402 O. E. Jensen

EveretT, D. H. & HAYNES, J. M. 1972 Model studies of capillary condensation: I. Cylindrical pore
model with zero contact angle. J. Colloid Interface Sci. 38, 125-137.

FrRANKEL, S. P. & MyskLs, K. J. 1962 On the ‘dimpling’ during the approach of two interfaces. J.
Phys. Chem. 66, 190-191.

GaugLITZ, P. A. & RADKE, C. J. 1988 An extended evolution equation for liquid film breakup in
cylindrical capillaries. Chem. Engng Sci. 43, 1457-1465.

GOREN, S. L. 1962 The instability of an annular thread of fluid. J. Fluid Mech. 12, 309-319.

GROTBERG, J. B. 1994 Pulmonary flow and transport phenomena. Ann. Rev. Fluid Mech. 26, 529-571.

HALPERN, D. & GROTBERG, J. B. 1993 Surfactant effects on fluid-elastic instabilities of liquid-lined
flexible tubes: a model of airway closure. Trans. ASME J. Biomech. Engng 115, 271-277; and
Corrigendum 116, 133.

HAaLPERN, D., JENSEN, O. E. & GROTBERG, J. B. 1996 A theoretical study of surfactant spreading in
a simple lung model (preprint).

HamMmonD, P. S. 1983 Nonlinear adjustment of a thin annular film of viscous fluid surrounding a
thread of another within a circular cylindrical pipe. J. Fluid Mech. 137, 363-384.

HigaGins B. G. & Brown, R. A. 1984 Multiple equilibrium shapes of partially constrained menisci:
a quasi-static mechanism for instability of a coating bead. Chem. Engng Sci. 39, 1339-1345.

JENSEN, O. E. & GROTBERG, J. B. 1992 Insoluble surfactant spreading on a thin viscous film: shock
evolution and film rupture. J. Fluid Mech. 240, 259-288.

Jonnson, M. Kamm, R. D., Ho, L. W., SHAPIRO, A. & PEDLEY, T. J. 1991 The nonlinear growth of
surface-tension-driven instabilities of a thin annular film. J. Fluid Mech. 233, 141-156.

JonEs, A. F. & WiLson, S. D. R. 1978 The film drainage problem in droplet coalescence. J. Fluid
Mech. 87, 263-288.

JosepH, D. D. & RENARDY, Y. Y. 1993 Fundamentals of Two-Fluid Dynamics. Part 11: Lubricated
Transport, Drops and Miscible Liquids. Springer.

KamM, R. D. & SCHROTER, R. C. 1989 Is airway closure caused by a liquid film instability? Respir.
Physiol. 75, 141-156.

LANGBEIN, D. 1990 The shape and stability of liquid menisci at solid edges. J. Fluid Mech. 213,
251-265.

MackLEM, P. T., PRocTOR, D. F. & HoGg, J. C. 1970 The stability of peripheral airways. Respir.
Physiol. 8, 191-203.

MicHAEL, D. H. 1981 Meniscus stability. Ann. Rev. Fluid Mech. 13, 189-215.

MitLiN, V. S. 1993 Dewetting of solid surface: analogy with spinodal decomposition. J. Colloid
Interface Sci. 156, 491-497.

NaYrEH, A. H. 1970 Nonlinear stability of a liquid jet. Phys. Fluids 13, 841-847.

NEwHOUSE, L. A. & Pozrixipis, C. 1992 The capillary instability of annular layers and liquid
threads. J. Fluid Mech. 242, 193-209.

OLBRICHT, W. L. 1996 Pore-scale prototypes of multiphase flow in porous media. Ann. Rev. Fluid
Mech. 28, 187-213.

Oris, D. R., JouNsoN, M., PEpLEY, T. J. & Kamm, R. D. 1992 The role of pulmonary surfactant in
airway closure: a computational study. J. Appl. Physiol. 75, 1323-1333.

PLaTEAU, J. 1873 Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces
Moléculaires. Gauthier—Villars.

PRINCEN, H. M. 1963 Shape of a fluid drop at a liquid-liquid interface. J. Colloid Sci. 18, 178.

RAYLEIGH, LORD 1879 On the instability of jets. Proc. R. Soc. Lond. A 10, 4-13.

REISFELD, B. & BANKOFF, S. G. 1992 Non-isothermal flow of a liquid film on a horizontal cylinder.
J. Fluid Mech. 236, 167-196.

Roy, R. V., ROBERTS, A. J. & SimpsoN, M. E. 1996 A lubrication model of coating flows over a
curved substrate in space. J. Fluid Mech. (submitted).

SAEZ, A. E. & CARBONNELL, R. G. 1987 The equilibrium shape and stability of menisci formed
between two touching cylinders. J. Fluid Mech. 176, 357-378.

ScHwaARrTZ, L. W.,, PRINCEN, H. M. & Kiss, A. D. 1986 On the motion of bubbles in capillary tubes.
J. Fluid Mech. 172, 259-275.

ScHwaARrTZ, L. W. & WEIDNER, D. E. 1995 Modeling of coating flows on curved surfaces. J. Engng
Maths 29, 91-103.



The thin liquid lining of a weakly curved cylindrical tube 403

Tuck, E. O. & ScHwaRrTz, L. W. 1991 Thin static drops with a free attachment boundary. J. Fluid
Mech. 223, 313-324.

UNGAR, L. H. & BrowN, R. A. 1982 The dependence of the shape and stability of captive rotating
drops on multiple parameters. Phil. Trans. R. Soc. Lond. A 306, 347-370.

WILSON, S. D. R. & JonEs, A. F. 1983 The entry of a falling film into a pool and the air-entrainment
problem. J. Fluid Mech. 128, 219-230.

WONG, H., RADKE, C. J. & MORRIS S. 1995 Motion of long bubbles in polygonal capillaries. Part 1.
J. Fluid Mech. 292, 71-94.

Wu, R. & WEINBAUM, S. 1982 On the development of fluid trapping beneath deformable fluid-cell
membranes. J. Fluid Mech. 121, 315-343.

YianTsios, S. G. & Davis, R. H. 1990 On the buoyancy-driven motion of a drop towards a rigid
surface or a deformable interface. J. Fluid Mech. 217, 547-573.

YianTtsios, S. G. & HiGGins, B. G. 1989 Rayleigh-Taylor instability in thin viscous films. Phys.
Fluids A 1, 1484-1501.



